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Abstract

We consider the use of multigrid methods to solve the Euler equations for
hypersonic flow. We consider the steady state equations with a Runge-Kutta
smoother based on the time accurate equations together with local time step-
ping and residual smoothing. We examine the effect of the Runge-Kutta co-
efficients on the convergence rate considering both damping characteristics
and convection properties. We also show the importance of boundary con-
ditions on the convergence rate for hypersonic flow. Also of importance are
the switch between the second and fourth difference viscosity. Solutions are

given for flow around a bump in a channel and flow around a biconic section.
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Introduction.
Central difference type explicit schemes are currently being applied on a regular basis

in the solution of the Euler and Navier-Stokes equations see, e.g [171. In these applications
multigrid is used to accelerate the basic explicit schemes. However, in most cases the
applications have been to flows in the transonic or low supersonic regime. Higher speeds
have generally been treated without multigrid or using semi-coarsening [8, 10].

Multigrid methods were first developed for elliptic equations. These were later ex-
tended to hyperbolic equations such as the fluid dynamic equations for subsonic and
transonic flow [4, 7, 12]. For these cases the steady state retains many of the properties
of an elliptic equation since the region of supersonic flow is limited. We shall show that
with proper care the multigrid method still works for hypersonic flow. Gustafsson and
Lotstedt [2] have pointed out that hyperbolic multigrid works by two different processes.
For the long waves the advection process is most important and multigrid achieves its
efficiency by allowing the use of larger time steps on coarser grids. Hence, it is important

that the smoother use large time steps. However, for the shorter waves dissipation is
more important and the efficiency of multigrid is based on principles similar to that for
elliptic equations. In this study we consider a Runge-Kutta scheme [3] as the smoother
for the multigrid method. The central differences are augmented by an artificial viscosity
based on TVD principles [13]. A number of changes are made to the scheme to enable it
to work for higher speed flows. We consider both unbounded domains and domains with
solid surfaces at the boundaries. The main difficulties are not due to the basic multigrid
method but rather to the imposition of boundary conditions. We first describe the basic

Runge-Kutta method for the central difference scheme together with a description of the
artificial viscosity. We then describe the theory of the multigrid acceleration for a simple
advection equation. We finally present several cxamples to demonstrate our conclusions.

Basic Scheme
The basic elements of the scalar dissipation model considered in this paper were first

:.r.'r~ced by Jameson, Schmidt, and Turkel [3] in conjunction with Runge-Kutta ex-

sce.es. Te space discretization is based on central differences with an additional
ar. C cosi:v. This algorithm has been used by many investigators to numerically
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To facilitate the treatment of boundaries, two layers of ghosts cells are created near
each boundary. These ghosts cells are calculated by some extrapolation technique and
then central difference are used at all interior points for the fluxes and artificial viscosities.
At the solid boundary the normal velocity is reflected antisymmetrically to all ghost cells
while the tangential velocity and density is reflected symmetrically to all ghosts cells.
The pressure is calculated by the normal momentum equation. Hence, no special logic
is required for the artificial viscosity near the solid surface. This procedure was found to
be superior to setting the using zeroth order extrapolation for the first differences and
setting the third difference equal to zero in calculating the artificial viscosity at the wall.
We have also found that the effect of the second difference (5) is much more important
near the solid surface than the fourth difference (6). Hence, there is no harm at setting
the third difference equal to zero near the wall.

We finally discuss the choice of the Runge-Kutta parameters ak and the time step
in (3). For the coarser meshes and a scalar equation the central difference scheme with
the artificial viscosity reduces to a first order upwind scheme. For this scheme TVD
parameters have been suggested by Shu [11]. Tai [15, 18] has suggested other parameters
that are optimal for damping characteristics. We have generally followed the suggestions
of Tai as detailed later though the differences between the two set of coefficients was
small. On the fine mesh we have a difficulty since in the smooth regions the scheme
is a central difference operator with a fourth difference viscosity. However, near shocks
the switch reduces the scheme to a first order upwind scheme. Hence, we have chosen
Runge-Kutta coefficients that are stable for both sets of schemes. For most of the cases
described below we have used a three stage Runge-Kutta time stepping scheme. On the
coarser meshes we first considered the coefficients a, = 1/9, a 2 = 1/3 and a 3 = 1. This
has the property that for CFL = 3 we have pure convection, i.e. the wave moves one
cell each stage without any dissipation. We then reduce the CFL to 1.5 to introduce
dissipation. This turns out to be the same parameters suggested by Shu in his TVD
scheme. After some experimentation we now choose a, .148, a2 = .4 and a 3 = 1 with
no residual smoothing and CFL = 1.5 as suggested by Tai. On the finest mesh we choose
a, = .2, a 2  .55 and a 3 = 1 with a constant residual smoothing parameter 3 .2 and
CFL = 2.5 . In all cases the artificial viscosity was updated at every stage.

We have also experimented with a time step that depends on vjj as given in (11). In
this case the time step is smaller near strong shocks. We have also increased the second
order difference on the coarser meshes by introducing a dependence on v, see also [10].

Multigrid
Although we are primarily interested in solving the Euler equations, the simple ad-

vection equation provides useful clues to the role of multigrid for accelerating the con-
vergence. We next describe the multigrid theory for both the one and two dimensional
model problems. The one dimensional analysis is used to motivate the choice of Runge-
Kutta parameters and time step. The two dimensional analysis indicates the central role
of the boundary conditions.
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One dimensional theory
Each Runge Kutta iteration has the potential to both convect and damp the error. In

a multigrid scheme, the damping of the higher frequency errors is an essential property of
the smoother. Lower frequency errors are more efficiently damped on coarser grids. For
a fixed time step fhe convergence of the multigrid method is improved as the damping
properties of the smoother are improved. On the other hand, to get the most advantage
from the convective properties of the Runge Kutta scheme, a large time step is needed.
An increase in the time step is often at the expense of the efficiency of the smoothing. To
quantify these observations, we consider the one dimensional scalar advection problem

(13) Ut + U. = 0.

We first analyze the periodic boundary condition case, where the Runge Kutta multi-
grid scheme is optimized by considering only the damping properties of the RK Smoother
- convection cannot accelerate convergence. After discretizing the spatial derivative us-
ing a central difference on a uniform mesh and adding both first and third order artificial
viscosities, see (5) and (6). We rewrite equation (3) as

(14) u(k) = u() - akAtR(k-l)

where

(R(k-1)) _ ui+1 - Ui-1 ) A X u+1 - 2ui + uj 1
2Ax (Ax) 2

+C(4)(AX)3ui+2 - 4u- 1 + 6ui - 4ui+l + ui-i

(Ax)
4

The convergence properties of the time iteration (used to solve the periodic problem)
can be studied by looking at the amplification factor. If it = eiIx/A2 is a Fourier mode,
then the symbol of the residual is
(15) [i sin 0 4(2) sin' 0 + 16E(4) sin 4 9]

and the symbol for the complete, k stage Runge-Kutta iteration is

(16) fn +I = 9(0)iJ

where
9(0) 1 akz + Okak-lz 2 + + akakl ... alZk

and
z =-Atr(o).

For low frequency errors, 101 << 1, the symbol of the residual is also small. In fact,

At
z ; -A(iO + 4c2)0), A = At
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and therefore jg(O)l is close to one. Thus, low frequency errors are reduced very slowly.
For high frequency errors, the size of Ig(9)I depends on the Runge-Kutta parameters as
well as on the Courant number. To use the RK time stepping scheme effectively as a
multigrid smoother, the amplification factor should be small for all frequencies which
cannot be represented on coarser levels, i.e. the high frequencies. Various strategies,
based on this model problem, have been used to obtain parameters which result in good
Runge-Kutta smoothers. The basic philosophy is to uniformly reduce the amplification
factor over all high frequencies, 7r/2 < 0 < ir. We note, however, that the choices of the
alpha's and the Courant number depend very strongly on the type and strength of the
dissipation terms. Optimal choices for a three stage scheme for the first order upwind
discretization (6(2) = 1/2, E(4) = 0), for instance, results in an unstable scheme when used
for the third order discretization with C(2) = 0, E(4) = 1/16.

For linear problems, the multigrid algorithm consists of both the RK smoother and a
coarse grid correction. In a typical two grid scheme, the coarse grid correction involves
the restriction of the residual to a coarse level, solving for the correction on the coarse
level, and then interpolation of the correction back to the fine grid. Multiple level
schemes replace the coarse grid solve by another RK step together with a coarse grid
correction to the next coarser level. Using reasonably good RK parameters with suitable
restriction, interpolation and coarse grid operators results in a one dimensional iterative
method which converges uniformly well for all mesh sizes. Moreover, the convergence
per multigrid cycle can be made arbitrarily good using a RK smoother with a sufficient
number of stages. This is not necessarily the case for the two dimen-ional problem, as
we explain below.

Two dimensional theory
We now consider the two dimensional advection problem,

(17) ut + au, + buy = 0,

first with periodic boundary conditions. Although the one dimensional analysis of the
RK scheme can be used to get stable 2-d RK schemes, the two dimensional coarse grid
correction is fundamentally different than in one dimension. There are low frequency
errors whose residuals are magnified on coarser grids. The easiest way to understand this
is the following. Suppose the space derivatives have been discretized on a uniform grid
with cells of size h x h as in the one dimensional case, a central difference plus artificial
viscosity in the form of both second and fourth differences. Then the Fourier symbol,
corresponding to a Fourier mode, eiSz/he i c y/h, of the two dimensional residual is

hRh(9, 1) i(a sin 0 + b sin 0) + 4C(2)(a sin 2 9 + b sin 2 0) + 16E()(a sin 4 9 + bsin4 )

which, for small 9 and 0, is

(18) i(aO + bo) + 4E(2)(a02 + b02 ) + 16(4)(a0 4 + b04).
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On the coarser grid, with cells of size 2h x 2h, the symbol of the residual for the same
frequency is

hi?20 -i(asin20 + bsin20) + 4h(2h)(2) (a sin 2 20 + bsin2 20)
2 (2h)2

+16h(2h)3E(4)(a sin 4 20 + b sin 4 20)
(2h) 4

For small 9 and 0 this is approximately

(19) i(aO + be) + 86(2)(a9 2 + b02 ) + 128,(4)(a9 4 + b04).

Several observations can be made by comparing these two symbols, one representing
the residual on the fine grid and the other representing the residual of the same error
on a coarse grid. The Runge Kutta smoother cannot efficiently damp the low frequency
errors. At the same time, the restriction and the interpolation operators transfer the
low frequencies quite accurately. Thus, a two level multigrid cycle, even assuming that
the coarse grid equations are solved exactly, can only solve for the lowest frequencies
to the extent to which they can be represented on the coarse grid. Comparing the two
expressions (18) and (19), we see the following. If aO + be > Ch for some positive
constant, C, then the first term in both expressions is the dominant term, and the
expressions are approximately equal. Thus the coarse grid 'sees' the same residual,
and can correct for it. However, if a9 + b4 is zero, i.e., the error is constant along
characteristics, the imaginary part of the symbol vanishes and the situation is quite
different. If only first order viscosity (i.e., C(2) $ 0, C(4) = 0) is used on both the fine
nd the coarse grids, then, for small 0 and €, the ratio of the size of the residual when

computed on the fine grid to the size of the residual computed on the coarse grid is

4()(a02 + b02 ) 1

8C( 2)(a02 + b02)  2

If only the third order viscosity is used on both fine and coarse grids (i.e., 6(2) = 0,

EN $ 0), then this ratio is only

16E(4)(a94 + bq 4 ) 1

128C(4)(a94 + b0 4 )  8

Since it is common to use the higher order viscosity on fine grids, and the less expensive,
lower order viscosity on coarse grids, we also consider the case where E(2) = 0 and E(4) 0
on the fine grid and E(2) j 0 and 6( 4) = 0 on the coarse grid. In this case, the ratio is

16j4)(a04 + b0 4 )

8C( 2)(a02 + b02)

Thus the corresponding multigrid algorithms will only be able to reduce the errors which
are constant along characteristics by the approximate amounts of 1/2, 7/8 and 1 (not

7



at all), depending on the type of viscosities used. In particular, we note that this means
that, no matter how well the RK scheme is optimized, the convergence rate per multigrid
cycle cannot be made arbitrarily small.

For non-periodic boundary conditions, for example those used for inflow/outflow or at
a solid body, the situation is not as bad. In this case, convection plays an important role
in the convergence process. To see the effect of inflow/outflow boundary conditions on
the convergence rates of the multigrid, consider the two dimensional advection equation,
(17) on the unit square, with a = b = 1 with inflow boundary conditions specified at
the bottom and left sides. Table 1 shows the difference in the convergence rates of the
periodic problem and the inflow/outflow problem for a two grid multigrid algorithm.
The computations were done by explicitly forming all of the matrices involved and then
finding the eigenvalue of greatest modulus. We used the same RK coefficients for all
cases, with a1 = .2, a 2 = .55, a3 = 1 and A = 1.5. The coarse grid equations are
solved exactly. The spectral radii are given for one to three RK smoothing steps per
multigrid cycle. Table la is with c(2) = 1/2 , E(4) = 0 on the fine grid and E( 2) = 1/2
) E(4) = 0 on the coarse grid, Table lb is with E(2) = 0 , C(4) = 1/16 on the fine grid
and E(2) = 0, f(4) = 1/16 on the coarse grid, and Table 1c is with E(2) = 0 , 6(4) = 1/16
on the fine grid and E(2) = /2 , E(4) = 0 on the coarse grid. We make the following

observations. The convergence rates of the inflow/outflow problems are much better
than for the corresponding periodic problems. Rather surprisingly, the numbers indicate
that this is true even as the problem size is increased. This effect is much greater than
can be attributed to just the convection on the fine grid, since this would just reduce the
convergence rate by a factor of 1 - O(h). Moreover, additional smoothing can be used
to further reduce the convergence rate for the inflow/outflow problem.

Model problem vs. real problem
To what extent does the model problem analysis predict the behavior for our real

problem of interest? In the model problem analysis we have tried to model the multigrid
cycle as closely as possible. For the Euler equations, we use a cell-centered FAS multigrid
approach for non-linear equations to accelerate the convergence of the Runge-Kutta time
stepping to the steady state solutioai. For linear problems such as our model advection
problem, FAS is equivalent to the correction scheme. A cell-centered scheme was used
in both cases, with equivalent projection and interpolation operators for the case of
uniform grids. There are many differences, however, which are more difficult to model.
We mention a few of them here.

Since the choice of the RK parameters depends strongly on the amount of artificial
dissipation, it is somewhat surprising that the model problem parameters work at all for
the Euler equations. A scalar viscosity is used for the system, the same amount for each
equation. Thus the effective sizes of E(2) and 4) which would be appropriate in thz model
problem analysis actually lie in a range of values. Similarly, although we use local time
stepping, the Courant number, A* is a scalar quantity determined by the whole system
and used for all four equations. Thus, the model problem should also be analyzed for a
whole range of A's. The use of the nonlinear switching mechanism on the fine grid also

8



periodic inflow/outflow
RK steps 8 x 8 16 x 16 32 x 32 8 x 8 16 x 16 32 x 32

a). 1 .567 .591 .607 .371 .378 .381
2 .517 .519 .513 .138 .145 .154
3 .498 .515 .511 .068 .089 .096

periodic inflow/outflow
RKsteps 8x8 16x 16 32x32 8x8 16x 16 32x32

b). 1 .888 .919 .933 .685 .704 .709
2 .859 .898 .919 .477 .507 .527
3 .838 .890 .900 .333 .364 .399

periodic I inflow/outflow
RKsteps 8×8 16 x16 32x32 8x8 16 x16 32x32

c). 1 .951 .990 .998 .697 .748 .768
2 .929 .988 .997 .496 .528 .547
3 .911 .986 .997 .354 .389 .401

Table 1: Comparisons of spectral radii for two grid multigrid, periodic vs. inflow/outflow
a). first order discretization on both fine and coarse grid levels b). third order discretiza-
tion on both fine and coarse grid levels c). third order discretization on fine and first
order on coarse grid level

complicates the correspondence between the artificial viscosities for the model and real
problems. Thus, for smooth flows, the model problem using E2) = 0 on the fine grid and
E(4) = 0 on the coarse grids has similar behavior. The non-uniform mesh with varying
aspect ratios of the cells and the variation in the alignment of the flow with the grid can
be partially modeled by considering the 2-d advection equation (17) with varying ratio,
a/b.

Results
In all cases we use a 3 stage formula as described above. A simple V cycle is used

with smoothing on the way down to coarser meshes and simple interpolation on the
way up to finer meshes. The standard formula is to do one smooth on the finest mesh

and 2 smoothings are all coarser meshes, though other choices are described later. The
coefficient of the third order viscosity is (4) = 1/16.

We first consider an inflow-outflow case. We use a uniform Cartesian grid with
a constant inflow at the left and lower boundaries and outflow at the right and top
boundaries. The Mach number and angle of attack are used to specify the three incoming

9



i=0a)..7E0

i= 4 max=.57E-02 8 max=. 16E-03 i= 12 mnax=.1I8E-05

b).

i= 4 max=. 19E+00 i=8 max=.70E-O1 i=12 max=.18E-O1

c).

i= 4 max=.94E-02 i=8 max=. 17E-02 i=12 max=.44E-03

F igure 1: Entropy in inflow/outflow case, Mach 10, 45 degree angle: a) first orderI
viscosity on fine and all coarse levels b) third order viscosity on fine and all coarse levels
c) switched viscosity on fine grid and first order viscosity on all coarse levels.
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Figure 2: Flow over a burnp in a channel, Mach 10



characteristic variables at inflow while the outgoing variable is extrapolated from the
interior. At outflow one characteristic is incoming and is specified while the other three
are extrapolated. The steady state solution is a constant. The initial conditions are the
steady state solution plus a ten percent random perturbation. In figure 1 we plot the
entropy for a flow entering the domain at 45 degrees to the x axis and a speed of Mach
10 after 4, 8 and 16 multigrid cycles. One can clearly see that the main wave travels
along the characteristics which for the entropy is the stream line, with the convergence
rates consistent with the theoretical results for the two dimensional advection equation
-with various artificial viscosities. The effect of the advection is clearly seen.

In the second case we consider flow in a channel with a 4 percent bump on the lower
wall. The grid is uniform in the x direction and stretched in the y direction. In figure
2a we show the grid while in figure 2b we plot the isomach lines for a Mach 10 flow.
In figure 2c we show the convergence rate for both a 64 x 32 grid and a 128 x 64 grid
with the standard multigrid parameters. In figure 2d we plot the convergence rate when
we do one iteration on the finest mesh and 10 iterations on the coarser meshes instead
of the standard 2 iterations on the coarser mesh. We see that doing more iterations
on the coarser meshes does not do any harm. On the contrary in figure 2d we have a
convergence rate independent of mesh size which we did not have in figure 2c.

In the third case we consider flow about a cone consisting of two sections. The mesh
is 128 x 32 with a nonuniform grid. The inflow is at Mach 6 with 0 degree angle of
attack. In figure 3a we plot the convergence history for this case. In figure 3b we plot
the residual of the continuity equation when the standard multigrid parameters are used.
We have plotted both the entire field and a closeup of the leading edge. As expected the

largest contributions to the residual come from the bow shock and two weaker shocks that
originate at the point where the cone has a discontinuous tangent. In figure 3c we perform
only one smoothing on the coarser grids. There is now a noticeable residual ahead of the
bow shock in the free stream region. Thus, this multigrid scheme has caused disturbances

to move upstream while in figure 3b there are only minor perturbations ahead of the
shock. Hence, the central difference scheme allows disturbances to propagate upstream
but the net effect is negligible. Hence, if the central multigrid acceleration does not
contain enough smoothing on all grids then it can increase the effect of this upstream
perturbation. Hence, there may be an advantage to considering an upwind multigrid
even for central difference schemes.

Conclusions

The efficiency of multigrid for the Euler equations is governed by the smoothing
properties of the basic scheme perpendicular to the characteristics and to convection

properties of the scheme along the characteristics. On the coarse grids we have used
Runge-Kutta parameters that are optimal for first order upwind schemes. On the finest
mesh we use parameters that are stable for both a first order upwind scheme and a central
difference scheme with a fourth difference artificial viscosity. By using residual smoothing
we can increase the time step while maintaining good smoothing properties. In general
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we have found that a small amount of residual smoothing increased the robustness of

the code. However, further increasing the residual smoothing and increasing the time

step did nut seem to improve the convergence rate. For a centri. difference scheme with

artificial viscosity the second difference viscosity is important for the shock treatment.

The behavior of the multigrid scheme is more affected by the fourth difference viscosity.

Hfence, a TVD scheme by itself is not a good smoother for a multigrid scheme until extra

terms are added that can damp high frequencies.

We have found that for inflow-outflow boundaries that the multigrid central differ-

ence scheme converges rapidly for all Mach numbers. We have indeed shown that the

convergence rates for the semi-infinite case are better than for the periodic case. The

difliculties and slow convergence rates for more difficult geometries are due to boundary

treatment. Care must all be exercised in the treatment of the artificial viscosity near

the boundary. For the inflow-outflow case computing many iterations of the smoother

on the coarse grids increases the convergence rate but not by very much so that it is

not efficient. One drawback of the multigrid method is that it can convect disturbances

upstream even for hypersonic problems. This propagation against the stream can be

more pronounced than that introduced by the central difference smoother.
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